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a b s t r a c t 

With the recent technological advances, biological datasets, often represented by networks (i.e., graphs) 

of interacting entities, proliferate with unprecedented complexity and heterogeneity. Although modern 

network science opens new frontiers of analyzing connectivity patterns in such datasets, we still lack 

data-driven methods for extracting an integral connectional fingerprint of a multi-view graph popula- 

tion, let alone disentangling the typical from the atypical variations across the population samples. We 

present the multi-view graph normalizer network (MGN-Net 2 ), a graph neural network based method to 

normalize and integrate a set of multi-view biological networks into a single connectional template that 

is centered, representative, and topologically sound. We demonstrate the use of MGN-Net by discovering 

the connectional fingerprints of healthy and neurologically disordered brain network populations includ- 

ing Alzheimer’s disease and Autism spectrum disorder patients. Additionally, by comparing the learned 

templates of healthy and disordered populations, we show that MGN-Net significantly outperforms con- 

ventional network integration methods across extensive experiments in terms of producing the most cen- 

tered templates, recapitulating unique traits of populations, and preserving the complex topology of bi- 

ological networks. Our evaluations showed that MGN-Net is powerfully generic and easily adaptable in 

design to different graph-based problems such as identification of relevant connections, normalization 

and integration. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Modern network science has introduced exciting new opportu- 

ities for understanding the underpinning mechanisms of biolog- 

cal systems by examining interactions within their components 

 Ideker et al., 2001 ). In the face of the ongoing ‘tsunami’ of biolog-

cal data collection spanning the range from genetic ( Adams et al., 

991 ) and metabolic networks ( Kanehisa and Goto, 20 0 0 ) all the

ay up to social and economic systems ( Salathé et al., 2010 ), 

ata-driven network representations have allowed us to map com- 

lex interplay between components of biological systems such 
✩ Data used in preparation of this article were obtained from the Alzheimerâ€TM s 

isease Neuroimaging Initiative (ADNI) database ( adni.loni.usc.edu ). As such, the in- 

estigators within the ADNI contributed to the design and implementation of ADNI 

nd/or provided data but did not participate in analysis or writing of this report. 

 complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/ 

p-content/uploads/how _ to _ apply/ADNI Acknowledgement_List.pdf 
∗ Corresponding author. 

E-mail addresses: irekik@itu.edu.tr , irekik@dundee.ac.uk (I. Rekik). 

URL: http://www.basira-lab.com/ (I. Rekik) 
2 https://www.github.com/basiralab/MGN-Net 
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s genetic data by revealing gene co-expression and connectomic 

ata by investigating correlations in neural signaling between dif- 

erent brain regions. Namely, graphs present a natural tool to 

tudy such interactions (or connections) in complex biological 

ata including protein-protein interactions ( Safari et al., 2014 ), 

etabolic networks ( Lee et al., 2008 ), and brain connectivity net- 

orks which span the field of network neuroscience ( Bullmore and 

porns, 2009 ). In the former context, network neuroscience pro- 

oses to encode the brain wiring in a graph by representing the 

rain regions as nodes and their interactions as edges linking those 

odes, which has propelled the development of advanced network- 

ased analysis techniques of the brain construct ( Bassett and 

porns, 2017 ). Particularly given the recent proliferation in large 

nd multi-modal connectomic datasets such as the Human Con- 

ectome Project ( Essen et al., 2012 ) acquired using multiple neu- 

oimaging modalities including structural T1-weighted, diffusion, 

nd functional magnetic resonance imaging (MRI), it is not always 

bvious how to integrate multi-modal connectomic data together 

 Van Essen and Glasser, 2016 ), nor easy to do so in practice, in

rder to first understand how the brain’s structural, morpholog- 

cal and functional levels interlink to form this integrated com- 

https://doi.org/10.1016/j.media.2021.102059
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2021.102059&domain=pdf
http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI
mailto:irekik@itu.edu.tr
mailto:irekik@dundee.ac.uk
http://www.basira-lab.com/
https://www.github.com/basiralab/MGN-Net
https://doi.org/10.1016/j.media.2021.102059
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Fig. 1. Connectional template comparison for identifying discriminative connections differentiating between typical and atypical populations of networks. 
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lex system, and then identify typical and atypical connectional 

rends fingerprinting the human brain. This is substantially due to 

he large variability in brain connectivity across individuals, which 

imits our ability to disentangle the ‘healthy’ brain connectional 

ariability from the ‘pathological’ variability. For instance, two in- 

ividuals who largely differ in particular brain connections might 

ot indicate that one of them has a pathological connection, this 

ifference can still fit healthy connectional brain patterns. To dis- 

inguish between healthy and disordered connectional variability, 

e need to define a ‘normalization’ or ‘standardization’ process 

f brain networks ( Fig. 1 ). Eventually, we hypothesize that reduc- 

ng inter-subject variability in both healthy and disordered popula- 

ions through a normalization process will contribute towards help- 

ng better identify ‘pathological’ alterations in brain networks as 

eviations from the ‘standard/normalized’ brain network represen- 

ation. Without any loss of generalizability, this line of reasoning 

xtends to other biological networks with multiple views, meaning 

hat each sample is represented by a set of networks, where each 

etwork view captures unique traits of the sample (for example, 

unctional, morphological and structural). 

Here we propose a novel multi-view graph integration (MGI) 

ethod which produces a unified normalized connectional repre- 

entation of a population of multi-view networks; for example a 

onnectional brain template (CBT) from a heterogeneous popula- 

ion of multi-view brain networks. Specifically, our MGI method 

aps into the power of deep-learning multi-disciplinary architec- 

ures, which can handle large-scale, highly non-linear and hetero- 

eneous datasets. Although deep learning has been recently used 

o regress brain networks ( Bronstein et al., 2017 ), there has not 

een any work on applying deep learning for fusing networks in 

eneral. Critically, fusing multi-view biological networks is an un- 

harted territory where network science and deep learning have 

ot cross-fertilized, especially the emerging field of geometric deep 

earning on graphs and manifolds (i.e., graph neural networks). 

ere we set out to integrate a population of multi-view biological 

raphs with the aim to estimate a representative reference connec- 

ional template by normalizing connections across the population 
2 
amples, which is an essential step for group comparison studies as 

ell as discovering the integral signature of an anomaly in a given 

opulation (e.g., disordered) by comparison with a typical connec- 

ional template (e.g., healthy). In this context, we hypothesize that 

 population-driven connectional template satisfies the following 

roperties: (1) well-centeredness, (2) discriminativeness, and (3) 

opological soundness. A well-centered template occupies the ‘cen- 

er’ of a population by achieving the minimum distance to all pop- 

lation samples. A discriminative template implies that the esti- 

ated template consistently captures the unique and distinctive 

raits of a population. Last but not least, convergent studies show 

hat a large variety of biological networks has extraordinarily com- 

lex yet highly organized topological patterns such as the spatially 

conomical layout of brain regions that are likely to be a conse- 

uence of the conservation of wiring costs being an important se- 

ection pressure on the evolution of brain networks ( Bullmore and 

porns, 2009 ). Therefore, the estimated template should be topo- 

ogically sound by preserving the population topological properties 

uring the normalization process. 

From a deep learning perspective, methods for multi-view net- 

ork integration are currently lacking. The simplest way to inte- 

rate a set of biological networks is to linearly average them. How- 

ver, such a normalization technique alone is very sensitive to out- 

iers and cannot be generalized to blend information of multi-view 

etwork datasets with heterogeneous distributions. Currently, the 

revailing technique for non-linear network integration is similar- 

ty network fusion (SNF) ( Wang et al., 2014 ), which is based on 

essage passing theory ( Pearl, 1988 ). SNF aims to estimate a sta- 

us matrix for each network that carries the whole information 

n the networks and a sparse local matrix that only takes up to 

op- k neighbors into consideration. Next, an iterative integration 

tep is conducted to update each status network through diffus- 

ng mean global structure of remaining networks and along with 

he sparse local network. Even though SNF is a powerful tool since 

t is a generic unsupervised technique, it comes with strong as- 

umptions such as emphasizing the top k local connections for 

ach node and equally averaging the global topology of comple- 
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entary networks for each iterative update to ultimately merge 

hem. Another very recent approach, the netNorm ( Dhifallah and 

ekik, 2019 ), utilizes a graph-based feature selection along with 

NF to integrate multi-view networks. netNorm first constructs a 

igh-order graph using cross-view connectional features as nodes 

nd their Euclidean distance as a dissimilarity measure to select 

he most centered ones across the population. Next, for each net- 

ork view, it composes a mosaic of the selected edges across sub- 

ects and eventually integrates the mosaic network views into a 

ingle network using SNF. Despite the promising results on multi- 

iew datasets, netNorm has recognized limitations. First, it uses the 

uclidean distance as a predefined metric for selecting the most 

epresentative connections which might fail to capture complex 

on-linear patterns in the given population. Second, netNorm con- 

ists of independent feature extraction, feature selection, and fu- 

ion steps. These fully independent steps cannot provide feedback 

o each other in order to globally optimize the template estima- 

ion process. Therefore, the pipeline is agnostic to cumulative er- 

ors. More importantly, both SNF ( Wang et al., 2014 ) and netNorm 

 Dhifallah and Rekik, 2019 ) do not have any mechanism to preserve 

omplex topological patterns in biological networks during the in- 

egration process, which is undeniably substantial for outputting 

opologically sound connectional templates. 

Here we propose the multi-view graph normalizer network 

MGN-Net), a novel graph neural network (GNN) based method for 

ntegrating and normalizing a set of multi-view graphs to learn a 

epresentative connectional template for a given population. Our 

pproach is inspired by cutting-edge, but so far neglected GNN 

rameworks ( Kipf and Welling, 2017; Defferrard et al., 2016; Xu 

t al., 2019; Veli ̌ckovi ́c et al., 2018 ) in the field of network inte-

ration. It is also distinct in that it circumvents the need for hand- 

rafted steps and general assumptions as it learns how to estimate 

he best template within an end-to-end optimization framework. 

NNs are an emerging subfield of deep learning which extends the 

dea of convolutional neural networks (CNNs) ( Krizhevsky et al., 

012 ) to non-Euclidean data such as graphs and surfaces. GNNs 

chieved remarkable results in several recent biomedical data anal- 

sis studies such as disease classification ( Rhee et al., 2018; Parisot 

t al., 2018 ) and protein interaction prediction ( Gainza et al., 2020; 

out et al., 2017 ). MGN-net capitalizes on graph neural network 

ayers to explore implicit patterns that exist in the population of 

ulti-view graphs and estimate the best template that is well- 

entered, discriminative, and topologically sound. 

This work presents an extension to the recent conference MIC- 

AI 2020 paper ( Gurbuz and Rekik, 2020 ). The method presented 

n ( Gurbuz and Rekik, 2020 ) introduces the Subject Normalization 

oss (SNL) function for optimizing the proposed Deep Graph Nor- 

alizer (DGN) architecture. However, SNL does not constrain the 

ntegration process in terms of maintaining the complex topology 

f biological networks. Furthermore, it does not evaluate the topo- 

ogical soundness of generated connectional templates. To address 

hese limitations, we further propose a novel loss function that pe- 

alizes the deviation from the ground-truth node strength topologi- 

al distribution. Through additional experiments, we show that this 

ovel loss function not only enforces the learning of more topolog- 

cally sound templates but also increases the performance in terms 

f centeredness and preserving discriminative traits of the network 

opulations during the population multigraph integration. 

. Method 

MGN-Net: a general framework to learn an integral and 

olistic connectional template of a multi-view graph popula- 

ion . MGN-Net takes ( Fig. 2 –a) two or more isomorphic weighted 

possibly unweighted) multi-view graphs and maps them onto an 

utput population center graph (i.e., connectional template). This 
3 
earning task is fundamentally rooted in embedding connectivity 

atterns onto a high-dimensional vector representation for each 

ode in each graph in the given population, namely a node em- 

edding ( Fig. 2 –b). During the embedding process, we preserve 

he unique domain-specific topological properties of the popula- 

ion graphs thanks to our novel topology-constrained normaliza- 

ion loss function which penalizes the deviation from ground-truth 

opulation topology. Next, we derive the template edges from the 

airwise relationship of node embeddings ( Fig. 2 –c). This relation- 

hip can be measured by any function that allows for deep net- 

ork backpropagation depending on the application so that the 

GN-Net can be trained in an end-to-end manner. Finally, we uti- 

ize our novel topology-constrained randomized loss function to 

inimize the distance between the population network views and 

he learned biological template. 

Following the optimization of our MGN-Net architecture in the 

raining stage, the learned connectional templates by the MGN-Net 

ncapsulates both shared traits among samples and different yet 

omplementary information offered by multi-view biological mea- 

urements. We used our method to integrate both small-scale and 

arge-scale multi-view brain connectome datasets derived from T1- 

eighted MRI to estimate CBTs. We demonstrate that MGN-Net 

ignificantly outperforms other baseline network integration tools 

n both datasets in terms of centeredness ( Fig. 4 ), preserving the 

ighly organized topology of brain networks (Table 4), and identi- 

ying the most discriminative connections distinguishing between 

ealthy and disordered brain states ( Table 5 ). We tested the finger- 

rinting property of the learned CBTs by conducting a simple com- 

arison between the learned healthy and disordered population 

BTs and selecting the most discriminative connectional features 

hat boost the classification accuracy of an independent machine 

earning-based diagnostic model. Our experiments highlighted the 

ecessity of multi-view network integration to provide a normal- 

zed and expressive characterization of a population of brain multi- 

iew graphs in both Alzheimer’s diseases (AD) and the autism 

pectrum disorder (ASD) populations ( Table 6 ). 

MGN-Net is an end-to-end graph neural network based ar- 

hitecture for normalizing multi-view graphs . To fully exploit 

he topological information offered by complex graph structures, 

e tap into the nascent field of GNNs on non-Euclidean spaces 

uch as graphs instead of conventional learning methods where the 

mplicit patterns are overlooked since graphs are projected onto 

 Euclidean space and processed similarly to any other numeri- 

al data. Given a population of multi-view samples, where each 

ample is represented by two or more graphs derived from dif- 

erent measurements ( Fig. 2 –a), MGN-Net first feeds each multi- 

iew sample through 3 graph convolutional layers. From layer to 

ayer, deeper holistic embeddings are learned for each node re- 

apitulating the complementary information offered by heteroge- 

eous measurements ( Fig. 2 –b). Next, we produce the normalized 

onnectional template graph using pairwise relationships of node 

mbeddings outputted by the final layer ( Fig. 2 –c). 

To evaluate the representativeness of the learned population 

emplates, we propose the topology-constrained normalization loss 

TCNL) function. The TCNL loss is composed of two parts. First, we 

ompute the mean Frobenius distance between the learned tem- 

late and a random subset of training samples to evaluate its cen- 

redness. Second, we compute the Kullback-Leibler divergence of 

ode strength distributions of the connectional template and the 

andom subset of training samples with the aim of measuring de- 

iation from the real topology of the population multi-view graphs. 

e have particularly chosen the node strength distribution to con- 

train our loss optimization given that node strength presents a 

imple yet the most fundamental network measure and other ad- 

anced topological measures such as centrality measures depend 

n it ( Bullmore and Sporns, 2009 ). Note that TCNL compares the 
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Fig. 2. Overview of the proposed multi-view graph normalizer network (MGN-Net) architecture for integrating a population of multi-view graphs. a) Tensor representation 

of multi-view networks. We represent each input sample by a tensor T s ∈ R n r ×n r ×n v where n r is the number of nodes and n v is the number of heterogeneous views. b) 

Node embedding learning. Abstract vector representation for each node of the input network is learned through 3 graph neural network layer. c) Tensor representation 

of pair-wise relationship computation. Calculation of pairwise relation of node embeddings is reformulated as a tensor operation for easy and efficient backpropagation. 

d) Template refinement after training. We execute a post-training refinement step to eliminate any bias towards the given input subject by computing the median of all 

possible templates to create the ultimate template T re f for the given population. 
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f l l 
earned graph template with other multi-view graphs in the popu- 

ation, therefore the MGN-Net, by learning the most essential con- 

ectivities and normalizing trivial variabilities specific to samples, 

aps each multi-view graph to a population-representative tem- 

late. The randomization of the training samples used for network 

ormalization induces a loss regularization effect since it is much 

asier for the model to overfit if the loss is calculated against the 

hole dataset in each iteration. Moreover, the random sampling 

ize is predefined as a hyperparameter that is much smaller than 

he training dataset size, hence the magnitude and the computa- 

ion time of loss are independent of the number of subjects in the 

ataset. 

Following the completion of the training phase, MGN-Net can 

ap any multi-view biological graph to a connectional template 

hat fingerprints the input population. However, each fingerprint is 

iased towards the particular subject that is used to create it. In 

rder to avoid such bias, we further embed a post-training regu- 

arization step ( Fig. 2 –d). First, we generate biased population tem- 

lates by feeding each input to the trained MGN-Net. Then we pick 

he most centered connections across biased templates by calcu- 

ating the element-wise median to obtain a finalized connectional 

emplate that represents the population most. 

.1. Multi-view graph normalizer network 

Graphs (i.e. networks) are used extensively in various fields 

anging from drug discovery to computational linguistics. They are 

lso the backbone of many biomedical applications due to their 

reat ability to represent knowledge of interacting entities. Despite 

heir ubiquity, graphs cannot be easily used for machine learning 

pplications since there is no straightforward way to encode their 

on-Euclidean structure into a feature vector representation. Clas- 

ical approaches such as handcrafted heuristics ( Liben-nowell and 

leinberg, 2003 ), graph statistics ( Bhagat et al., 2011 ), and kernel 

unctions ( Vishwanathan et al., 2008 ) are widely used to compute 
4 
eature vectors for predictive tasks on graphs. However, such ap- 

roaches treat the graph-driven feature vector estimation (i.e. em- 

edding) process as a preprocessing step, therefore, they generally 

ail to learn task-optimized graph representations that preserve the 

raph structure and topology. 

The search for data-driven representation learning on graphs 

shered in a new deep learning-based approach called graph neu- 

al networks (GNNs) ( Kipf and Welling, 2017; Defferrard et al., 

016; Xu et al., 2019; Veli ̌ckovi ́c et al., 2018 ). As other conven-

ional methods, GNNs aims to compute a vector embedding for 

ach node in the graph. However, GNNs are unique in the sense 

hat they learn graph embedding through optimizing a predefined 

unction, therefore, they automatically learn the accurate repre- 

entation that is specific to the problem without any hand engi- 

eering. GNNs have recently revolutionized the field of graph the- 

ry and network analysis by generalizing convolutional neural net- 

orks ( Krizhevsky et al., 2012 ) (CNNs), which naturally operate on 

uclidean data such as images, to graphs. In particular, CNNs slide 

mall learnable filters through the image and at each position of 

he filters, small patch of pixels are multiplied by the learnable 

lters to extract some useful local features of the image such as 

ines and corners. In deeper layers, these local features are then 

ombined to learn more detailed structural features. By analogy to 

NNs working principle, GNNs exploit learnable filters to control 

ow each node aggregates information from its local neighborhood 

nd in each layer, hierarchically merges information passed by the 

revious layer and neighbors to learn a comprehensive vector rep- 

esentation for each node. 

Many GNN based methods can be framed in terms of Message 

assing Neural Networks (MPNN) paradigm ( Gilmer et al., 2017 ). 

et us represent a graph G with node features v i and edge features 

 i j . The forward pass consists of message passing and the read- 

ut phase. The message passing phase runs for L times (number of 

raph convolution layers) and is formulated in terms of message 

unctions M and node update functions U . In the message-passing 
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Table 1 

Major mathematical notations used in the paper. We denote tensors by boldface Euler script letters, e.g., X . Matrices are denoted 

by boldface capital letters, e.g., X , vectors are denoted by boldface lowercase letters, e.g., x , scalars and distributions are denoted 

by lowercase letters, e.g., x ,and sets are denoted by uppercase letters e.g., X . 

Notation Definition 

n r total number of nodes (regions of interests) in the networks 

n v total number of measurements (network views) for a sample 

T s subject’s tensor representation ∈ R n r ×n r ×n v 

T Training dataset 

T s template generated for subject T s , T s ∈ R n r ×n r 

T re f refined template for training dataset 

l index of a graph convolution layer 

e i j cross connectional features between node i j, e i j ∈ R n r ×n r 

F l filter-generating network at layer l that maps e i j to dynamic weights �l 
i j 

∈ R d l ×d l−1 

v l 
i 

embedding of i th node at layer l

N(i ) set of neighbors of node i 

S set of indices of randomly selected training samples for loss computation 

X v 
i 

v th view of i th random sample. 

λv normalization term for view v 
t s normalized node strength distribution of T s 
x v S ground truth normalized node strength distribution for view v th and randomly selected samples S

D KL Kullback-Liebler divergence 

L c v s centeredness loss for training sample s and view v 
L kl 

s 
v KL divergence loss for training sample s and view v 

L tcnl s overall loss computed for the training sample s 
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hase, node embeddings v l−1 
i 

are updated based on messages m 

l 
i 

ccording to: 

 

l 
i = AGGR 

{
M l 

(
v l−1 

i 
, v l−1 

j 
, e i j 

)}
j∈ N(i ) 

(1) 

 

l 
i = U l 

(
v l−1 

i 
, m 

l 
i 

)
(2) 

here AGGR is a permutation invariant aggregation function such 

s mean or max, N(i ) is the set of neighbors of i in graph G. Next,

he readout function R takes final node embeddings v L 
i 
, and per- 

orms the given task. Finally, a loss computed for the output of R, 

nd the network is trained in an end-to-end fashion. 

 

({
v L i | i ∈ G 

})
(3) 

he functions M l , U l , and R are all differentiable functions (at 

east differentiable everywhere except few points in their domain) 

o that they can be learned via gradient-based optimization. In 

hat follows, we first formalize our multi-view graph normaliza- 

ion problem then explain the components of our architecture in 

he frame of MPNN. 

We propose the MGN-Net to solve the problem of integrat- 

ng a population of multi-view networks. This problem can be 

efined as follows. Let sample s be represented by a set of n v 
eighted undirected graphs with n r nodes. We model this sam- 

le as a single tensor T s ∈ R 

n r ×n r ×n v that is composed of stacked n v 
djacency matrices { X 

v 
s } n v v =1 of R 

n r ×n r . Our objective is to integrate 

 set of multi-view graphs T = { T 1 , T 2 , . . . , T N } in order to obtain a 

opulation-representative connectional template T ∈ R 

n r ×n r that is 

1) well-centered, (2) discriminative, and (3) topologically sound. 

ince there is no general heuristics or conventional methods to 

eet these three broad constraints in a generic manner, we de- 

ised a novel architecture and loss function that learns the best 

ode representation for mapping each sample multi-view graph to 

 population-representative template using a GNN. We have sum- 

arized the major mathematical notations presented in this paper 

n Table 1 . 

First we feed sample s represented by a tensor T s ∈ R 

n r ×n r ×n v 

o our MGN-Net architecture ( Fig. 2 –a). Then holistic embeddings 

i.e. representations) are learned for each node through GNN lay- 

rs ( Fig. 2 –b). These embeddings encapsulate all the complemen- 

ary information supplied by the different views thanks to the 

raph convolution operation. There is an abundant variety of graph 
5 
onvolution operations. Particularly for our MGN-Net, we chose 

dge-conditioned convolution ( Simonovsky and Komodakis, 2017 ), 

 graph convolution tailored to simultaneously handle an arbitrary 

umber of different types of weighted edges, which is essential for 

GN-Net to blend connectivity patterns across the multiple graph 

iews of each sample. 

Given a multi-view graph, let e i j ∈ R 

n v denote cross-view fea- 

ures between node i and j acquired by stacking edge weights 

or all the available views such as cortical thickness and sul- 

al depth. In other words, for each sample s, we define the 

ross-view feature vector e i j associated with nodes i and j as 

 

T s (i, j, 1) , T s (i, j, 2) , . . . , T s (i, j, n v ) ] . Also, let l ∈ { l 0 , . . . , l out } be the 

ndex of a layer in the architecture and d l the output dimension 

f the l th layer. Each layer includes a filter-generating network 

 

l : R 

n v �→ R 

d l ×d l−1 that takes e i j as input and outputs edge-specific 

eight matrix �l 
i j 

which dictates the information flow between 

ode i and j. This network F l allows the MGN-Net model to learn 

nique filters at each layer for each pair of nodes (i.e., connection) 

hile exploiting the cross-view edge features. 

In terms of the MPNN paradigm, the edge-conditioned convolu- 

ion defines the message passing function M l as: 

 l = F l (e i j ; W 

l ) v l−1 
j 

+ b 

l ; F l (e i j ; W 

l ) = �l 
i j (4) 

here v l 
i 
∈ R 

d l ×1 is the embedding of node i in layer l and b 

l ∈ R 

d l 

enotes a network bias and F l is the defined filter-generating net- 

ork that maps R 

n v to R 

d l ×d l−1 with learnable weights W 

l . Further- 

ore, node embedding update function U l defined as: 

 l = �l . v l−1 
i 

+ m 

l 
i ; m 

l 
i = AGGR 

{
M l 

(
v l−1 

i 
, v l−1 

j 
, e i j 

)}
j∈ N(i ) 

(5) 

here �l ∈ R 

d l ×d l−1 is a learnable parameter, and N(i ) denotes the 

eighbors of node i . Noting that our aggregation schema is averag- 

ng, the following operation is performed at each layer l for every 

ode i . 

 

l 
i = �l . v l−1 

i 
+ 

1 

| N(i ) | 

( ∑ 

jεN(i ) 

F l (e i j ; W 

l ) v l−1 
j 

+ b 

l 

) 

(6) 

Note that F l can be any type of neural network and vary in 

ach layer depending on the characteristics and complexity of edge 

eights. Furthermore, v 0 
i 

corresponds to the initial node features of 

 so this convolution operation can also utilize the node features. 
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e note that since brain graphs or connectomes conventionally 

ave no node features, we set entries of the node-specific feature 

ector v 0 
i 

to ‘1’ (i.e., identity vector). Next, we generate an edge- 

pecific weight matrix �l 
i j 

by learning the filtering function F l for 

ach layer l through optimizing our loss function which will be de- 

ailed in the next section. Thanks to filtering functions, each edge 

rom node i to node j is associated with a unique weight matrix 

generated by F l from cross-view edge features e i j ) which controls 

he degree of node i ’s contribution to node j’s next layer embed- 

ing. Therefore following the first convolution, each node will have 

 different embedding even though they were identical in the be- 

inning. However, breaking this symmetry of nodes and simulta- 

eously learning distinct node embeddings is a heavy burden to 

ur model. The availability of node features circumvents the need 

or breaking symmetry, and instead of a noisy input of 1’s, it sup- 

lies extra information regarding nodes and their roles in the sys- 

em. Therefore we foresee that given both node and edge features 

GN-Net will output more comprehensive connectional templates 

nd converge to an optimum faster. 

After applying three layers of edge conditioned convolution 

eparated by rectified linear unit (ReLU), we learn abstract embed- 

ings V 

l out = 

[ 
v 

l out 
1 

, v 
l out 
2 

, ..., v 
l out 
n r −1 

, v 
l out 
n r 

] T 
for the multi-view graph 

odes ( Fig. 2 –b). Next, we compute the pairwise relationship of 

hese embeddings to construct the connectional template network 

 Fig. 2 –c). This step constitutes the readout function R of our 

odel. For our case, we simply used absolute difference since 

ur dataset is composed of morphological dissimilarity networks. 

he intuition behind this operation is our dataset preparation. We 

erived our brain networks by computing the pairwise absolute 

ifference in cortical measurements between pairs of ROIs. Since 

e need to map learned node embeddings (abstract ROIs mea- 

urements) back to network representation, we simply repeat our 

ataset preprocessing step. However, such relationship can be com- 

uted by any function that allows for backpropagation so that 

GN-Net can be trained in an end-to-end fashion. For instance, 

 simple function such as cosine similarity can be used to measure 

he similarity between output node embeddings. 

.2. Loss function 

Our MGN-Net architecture takes only one sample at a time, 

owever, we aim to output a population-representative connec- 

ional template. Since we do not have a ground truth template, 

o learn the mapping from one sample to the target population- 

emplate, we propose to evaluate the output template T s that is 

ased on a single sample s against a random subset of the train- 

ng dataset in the optimization process. In the meantime, we have 

o preserve the complex topology of the given biological networks 

hile ensuring that the generated template occupies the center 

f a population by achieving the minimum distance to all popu- 

ation samples (i.e., multi-view networks) to meet our (1) well- 

enteredness and (3) topological soundness criteria. To address this 

roblem, we present the topology-constrained normalization loss 

TCNL) function to evaluate the representativeness of generated 

emplates. TCNL computed against a random subset of training 

ubjects drawn independently for each subject in each epoch. In- 

ices of drawn samples are denoted by the set S. The TCNL loss is 

omposed of a weighted sum of two terms. The first term of the 

CNL computes the centredness loss L c of the output template and 

s formalized as follows: 

 c 
v 
s = 

∑ 

i ∈ S 
‖ 

T s − X 

v 
i ‖ F rob 

× λv ; λv = 

1 
μv 

max 

{ 

1 
μ j 

} n v 

j=1 

(7) 
6 
here T s denotes the connectional template for the sample s and 

 

v 
i 

is the v th view of i th random sample. μv is the mean of con- 

ectivity weights of view v and max 

{ 

1 
μ j 

} n v 

j=1 
is the maximum 

f mean reciprocals 1 
μ1 

to 1 
μn v 

. We include an additional view- 

pecific normalization weight λv since the value range of connec- 

ional weights for the input graphs might vary largely across views. 

or example, in our Alzheimer’s diseases left hemisphere popula- 

ion (see Section 3.1. Evaluation Datasets ), the mean connectional 

eight for maximum principal curvature is 0.084 with a min-max 

ange in [0 , 0 . 586] while the mean of cortical thickness is 0.723

ith a min-max range in [0 , 3 . 740] . Therefore, without a normal-

zation term, our MGN-Net model is most likely to overfit the view 

ith the largest connectional weights as it targets to optimize the 

efined loss function. Similar problems in the literature are ad- 

ressed by normalizing the adjacency matrices. For instance, SNF 

 Wang et al., 2014 ) divides connectivities in each row by the sum 

f the entries in that row for normalization; however, this breaks 

he symmetry in the adjacency matrices of the views, therefore, 

t is not applicable in our case. Moreover, a simple normalization 

pproach such as min-max scaling can saturate connections at 0 

nd 1 while standard z-score scaling generates negative connec- 

ivities in the network that is counter-intuitive for many types of 

ully positive networks. Therefore, we introduce λv to ensure that 

he model gives equal attention to each brain view regardless of 

heir value range. 

In addition to the centredness loss, we further add a second 

oss term L kl to penalize deviations from the topology of the 

raining networks based on Kullback-Leibler divergence of node 

trength distribution of the generated connectional brain template 

rom the node strength distribution of randomly selected training 

amples. Let A denote the adjacency matrix of a graph. We de- 

ned the topological strength k i of node i and the normalized node 

trength distribution n (i ) as follows: 

 i = 

∑ 

j 

A i j ; n (i ) = 

k i ∑ 

j k j 
(8) 

First, we compute the normalized node strength distribution of 

he generated template for sample s which is denoted by t s (i ) . 

ext, we calculate the ground truth 

{
x 1 

S 
(i ) , ..., x n v 

S 
(i ) 

}
for n v vie ws 

eparately by averaging normalized node strength distribution of a 

andom subset S of the training population. We calculate the topo- 

ogical loss L kl 
s 
v for subject s and view v as: 

 kl 
s 
v = D KL (t s || x v S ) + D KL (x v S || t s ) 

= 

n r ∑ 

i =1 

t s (i ) log 2 

(
t s (i ) 

x v 
S 
(i ) 

)
+ 

n r ∑ 

i =1 

x v S (i ) log 2 

(
x v S (i ) 

t s (i ) 

)
(9) 

Note that the Kullback-Leibler divergence D KL (P || Q ) is not a 

ymmetrical function ( D KL (P || Q ) � = D KL (Q|| P ) ) and defines the in-

ormation gained by changing beliefs from a prior probability 

istribution Q to the posterior probability distribution P . Intu- 

tively, P is the true distribution and Q is the estimate. There- 

ore D KL (x v 
S 
|| t s ) solely is sufficient to represent the topological 

oss. However, for our datasets using a symmetrical expression 

 KL (t s || x v S ) + D KL (x v S || t s ) provides a smoother training. 

Given the training population T and MGN-Net with parameters 

W 1 , b 1 , . . . , W l out 
, b l out 

}
. We define the TCNL loss L tcnl s for subject 

 and the overall optimization task as follows: 

 tcnl s = 

n v ∑ 

v =1 

L c 
v 
s + β × L kl 

v 
s ; min 

W 1 , b 1 ... W l out 
, b l out 

1 

| T | 
| T | ∑ 

s =1 

L tcnl s (10) 
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Table 2 

Data distribution for AD-LMCI and NC-ASD datasets. Each view in the 

datasets contains 35 nodes, and views are fully connected. In other 

words, each includes 1190 connections ( 35 × 34 , no self connections). 

Dataset AD/LMCI NC/ASD 

AD LMCI NC ASD 

Number of subjects 41 36 155 155 

Male 23 20 124 140 

Female 18 16 31 15 

Mean Age 75.27 72.54 15.36 16.92 

Number of Views 4 4 6 6 
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.3. Post-training refinement 

MGN-Net learns to map heterogeneous views of each subject to 

 population-representative template. After MGN-Net training, all 

earned connectional templates represent the population regardless 

f the input sample used to generate them. However, each tem- 

late is biased towards its associated training sample s . To elim- 

nate this bias, we suggest an extra step which is executed after 

he training to obtain more refined and representative templates 

 Fig. 2 –d). First, each subject is fed through the trained MGN- 

et in order to get the corresponding template. Then, the most 

entered connections are selected from these templates by taking 

he element-wise median. The median operation could also be re- 

laced with other measures of central tendency such as average or 

runcated mean, however, we used the centeredness score to em- 

irically verify that the median is the most suitable for our case. 

 re f = med 
{

T 1 , T 2 , . . . , T | T | 
}

(11) 

T re f denotes the final refined connectional brain template of the 

nput multi-view graph population. 

. Experiments and material 

.1. Evaluation datasets 

We showcase MGN-Net with four different evaluation tests: (1) 

enteredness, (2) topological soundness, (3) accurate identification 

f most discriminative connections between two biological groups, 

nd (4) biomarker discovery for neurological diseases. We bench- 

arked our method against SNF ( Wang et al., 2014 ), netNorm 

 Dhifallah and Rekik, 2019 ) and DGN ( Gurbuz and Rekik, 2020 )

the ablated version of MGN-Net without the L kl in the loss func- 

ion) on a small-scale dataset and a relatively large-scale dataset at 

he neuroscience scale given that brain disorder datasets are quite 

carce. The first datasets (AD/LMCI dataset) consists of 77 subjects 

41 subjects diagnosed with Alzheimer’s diseases (AD) and 36 with 

ate Mild Cognitive Impairment (LMCI)) from the Alzheimer’s Dis- 

ase Neuroimaging Initiative (ADNI) database GO public dataset 

 Mueller et al., 2005 ). Each subject is represented by 4 cortical 

orphological brain graphs derived from maximum principal cur- 

ature, the mean cortical thickness, the mean sulcal depth, and the 

verage curvature measurements ( Mahjoub et al., 2018 ). The sec- 

nd dataset (NC/ASD dataset) is collected from the Autism Brain 

maging Data Exchange ABIDE I public dataset dataset ( Di Martino 

t al., 2014 ) and includes 310 subjects (155 normal control (NC) 

nd 155 subjects with autism spectral disorder (ASD)) with 6 cor- 

ical morphological brain networks extracted from the 4 aforemen- 

ioned cortical measures in addition to cortical surface area and 

inimum principle area ( Soussia and Rekik, 2017; 2018 ). For each 

emisphere, the cortical surface is reconstructed from T1-weighted 

RI using the FreeSurfer ( Fischl, 2012 ) pipeline and parcellated 

nto 35 ROIs using Desikan-Killiany ( Desikan et al., 2006 ) atlas and 

ts corresponding brain network is derived by computing the pair- 

ise absolute difference in cortical measurements between pairs 

f ROIs ( Table 2 ). 

.2. Hyperparameter setting and training 

We trained 8 separate models to generate connectional tem- 

lates for the right and left hemispheres of four groups namely 

D, LMCI, NC, and ASD. We set all the hyperparameters for MGN- 

et using a grid search. Each model includes 3 edge-conditioned 

onvolution layers while each layer l contains a shallow neural 

etwork F l with ReLU activation to map 4 (for AD/LMCI dataset) 

r 6 (for NC/ASD dataset) connectional features obtained from 

eterogeneous views to R 

d l ×d l−1 in order to dynamically learn a 
7 
nique message-passing filter �l 
i j 

∈ R 

d l ×d l−1 for each pair of nodes. 

urthermore, edge-conditioned convolution layers output embed- 

ings with 36, 24, and 5 (for AD/LMCI dataset) or 8 (for NC/ASD 

ataset) dimensions for each node of the input network, respec- 

ively. Models are trained using Adam optimizer with a learn- 

ng rate of 0.0 0 06 and an exponential decay rate of 0.9 for the

rst moment and 0.99 for the second moment. Since we did not 

ave a GPU memory bottleneck, we executed an update once for 

he epoch utilizing the gradients computed for the whole dataset 

batch size = dataset size). We set the size of the random subset 

f training samples in our TCNL function to 10 and β which bal- 

nces the L c and L kl to 25 for AD-LMCI and 10 for NC-ASD. The 

lgorithms are implemented using PyTorch and PyTorch-Geometric 

 Fey and Lenssen, 2019 ) frameworks. 

We split each group into training and testing sets using 5-fold 

ross-validation which yields 80% to 20% split. We let each model 

rain for a maximum of 1200 epoch and apply early stopping if 

here is no improvement in the testing loss for more than 50 

pochs. We note that during the training there was neither a sig- 

ificant difference between training and testing losses nor a sign 

f overfitting due to excessive training. This can be explained by 

ur randomization process during loss calculation which perturbs 

he training distribution by selecting a different subset for each op- 

imization step. For instance, given our smallest group LMCI (37 

ubjects), there are more than 

(
37 
10 

)
≈ 3 . 4 × 10 8 different tar gets for 

GN-Net to fit which makes overfitting much harder compared to 

onventional learning tasks where targets are fixed. 

.3. Evaluating the Topological soundness of the learned connectional 

emplates 

Based on convergent evidence from empirical studies that 

eveal topological patterns in complex networks ( Bullmore and 

porns, 2009; Guimerá et al., 2005; Watts et al., 2006 ), we sug- 

est that the topology of networks should be preserved during the 

ntegration process to obtain more holistic and representative tem- 

lates. There are many studies investigating the topological fea- 

ures of structural and functional brain networks such as small- 

orld topology, highly connected hubs, and modularity at both 

he whole-brain scale of human neuroimaging and at a cellular 

cale in non-human animals ( Bullmore and Sporns, 2009 ). Here we 

ssume that imposing the simple node strength distribution con- 

traint on the MGN-Net training is sufficient to preserve the pop- 

lation topology to a large > extent since more complex topologi- 

al measures such as PageRank and effective size are derived from 

ode strength. 

As for the evaluation of the topological soundness of the 

earned brain connectional templates, we used additional topo- 

ogical measures including PageRank Page et al. , effective size 

 Burt, 1992 ), and weighted clustering coefficient ( Onnela et al., 

005 ) measures as they capture different topological properties of 

raphs. For each measure, we computed the Kullback-Liebler di- 

ergence of generated template distribution from the ground truth 
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3 https://github.com/basiralab/netNorm & https://github.com/basiralab/DGN 
istribution ( D KL (g|| t) where t denotes the template measure dis- 

ribution and g is the ground truth measure distribution). We ap- 

lied 5-fold cross-validation and generated connectional templates 

sing the training samples using MGN-Net, SNF, netNorm, and DGN, 

espectively. Next, we computed the aforementioned measures on 

he connectional templates generated by all three methods. We ac- 

uired ground truth by averaging measures that are independently 

alculated for each view of each testing sample . Finally, we reported 

he average Kullback-Liebler divergence across folds between the 

enerated template distribution and the ground truth distribution. 

ote that we normalized each distribution using the sum of all 

ode measures to get a valid discrete probability distribution (see 

.3.Topological soundness test for benchmark results). 

.3.1. PageRank 

Originally PageRank algorithm is proposed to measure the im- 

ortance of website pages based on a graph that is derived from 

orld Wide Web pages and hyperlinks between them. However, 

t is a general measure which can be applied to investigate graph 

opologies in various domains including biology and neuroscience 

 Gleich, 2014 ). We used the power iteration method for calculation 

nd set the damping parameter and maximum iteration to 0.85 

nd 100, respectively. 

.3.2. Effective node size 

A node’s ego network consists of its direct neighbors plus the 

ies among these neighbors. The effective size of a node measures 

he non-redundancy of the node’s ego network ( Burt, 1992 ). This 

easure is formulated as: 

 (i ) = 

∑ 

j∈ N ( i ) −{ i } 

( 

1 −
∑ 

k ∈ N( j) 

p ik m jk 

) 

(12) 

here N(i ) is set of neighbors of i, p ik is the proportion of the

eight of the edge connecting node i to node j to the sum of all

onnection weights of node i . m jk denotes the j’s connection with 

 ’s divided by the j’s strongest connection. 

.3.3. Clustering coefficient 

There are multiple ways to define the clustering coefficient for 

eighted graphs. The one we used for our experiments utilizes 

he geometric average of edge weights of the triangles through the 

ubject node ( Onnela et al., 2005 ): 

(i ) = 

1 

deg(i ) ( deg(i ) − 1 ) 

∑ 

j,k ∈ T ri (i ) 

(
ˆ w i j ˆ w ik ˆ w jk 

)1 / 3 
(13) 

deg(i ) is the degree of node i, T ri (i ) is the set of node pairs that

orm a triangle with node i and ˆ w i j is the weight of the connection 

etween node i and j normalized by the maximum connectivity 

eight in the graph. 

.4. Discriminative feature selection and biomarker discovery 

Our second criterion is that the generated templates are dis- 

riminative which means that the templates will encapsulate the 

ost distinctive traits of the input population. Note that our loss 

unction does not include any term to enforce this criterion and 

hat our model training is performed on a single population. How- 

ver, through our feature selection and biomarker discovery exper- 

ments, we showed that the MGN-Net integration process fulfills 

his criterion. 

Specifically, we propose to compare templates ( T A and T B ) gen- 

rated from two groups A and B to identify the most discriminative 

onnections disentangling both groups. To do so, we calculate a 

iscriminativeness score for each graph connection by taking both 

esidual matrix ‖ T A − T B ‖ F rob and absolute alteration ratio matrix 
8 
ax 

(
T A 
T B 

, 
T B 
T A 

)
into consideration. Alteration ratio plays a key role in 

iving equal attention to connections with relatively small weights 

ince the residual matrix alone focuses on the deviation of larger 

onnections. Next, we select the edges (brain connections) with 

he highest discriminativeness scores: 

core i j = max 

(
T A i j 

T B i j 

, 
T B i j 

T A i j 

)
+ α ×

∥∥T A i j 
− T B i j 

∥∥
F rob 

(14) 

Here α is a parameter to balance residual and alteration val- 

es for computing the discriminativeness score. We define it as 
2 

μT A 
+ μT B 

where μT A 
is the average of all connection weights of con- 

ectional template T A . Note that division by zero may occur during 

he computation of max 

(
T A 
T B 

, 
T B 
T A 

)
; we simply set alteration ratio to 

ero for such cases. 

For classifying populations ( Fig. 3 ), we first pick the top k con- 

ections with the highest discriminativeness scores calculated us- 

ng two connectional templates generated from the training sam- 

les. Next, we concatenate the cross-view edge features e i j of the 

elected connections, so we obtain k × 4 features for AD-LMCI pop- 

lations and k × 6 features for NC-ASD populations. Finally, we 

rain a support vector machine (SVM) classifier on these features 

o perform binary classification. We present the average accuracy 

cross both 5-folds and k values where k = { 5 , 10 , . . . , 25 } . Note 

hat we perform 16 classifications in total (4 populations namely, 

D-LMCI left hemisphere, AD-LMCI right hemisphere, NC-ASD left 

emisphere, and NC-ASD right hemisphere repeated for MGN-Net 

nd three baseline methods) and we independently select the op- 

imal hyperparameters such as kernel type, kernel-specific hyper- 

arameters, regularization parameter C, and tolerance for stopping 

riterion for each classification task using grid search (over 13600 

ombinations) by choosing the hyperparameters that yield best av- 

rage accuracy on the 5-fold cross-validation. SVM classification, 

ross-validation, and grid search procedures were implemented us- 

ng Scikit-learn ( Pedregosa et al., 2011 ). 

.5. Remarks on the SNF, netNorm and DGN benchmarks 

Originally SNF ( Wang et al., 2014 ) is applied to fuse similar- 

ty networks of cancer patients for clustering applications for can- 

er subtyping. However, it is mathematically demonstrated that 

NF can also be used to fuse dissimilarity networks where con- 

ections denote the difference between nodes as in our datasets 

 Dhifallah and Rekik, 2019 ). Furthermore, SNF is tailored to inte- 

rate a population of single-view networks whereas our multi-view 

etwork integration task operates at two levels: multi-view net- 

ork integration of individuals and population integration across 

ubjects. Therefore, we adapt SNF to our problem by combining 

t with averaging. We tried three different pipelines SNF-SNF (SS), 

verage-SNF (AS), and SNF-Average (SA) where the first step is 

he merging of the multi-view network for each individual, and 

he second one is the fusion across subjects. For clarity, we only 

resent the results by SA as it largely outperformed the 3 other 

NF-based alternatives across all evaluation datasets. As for net- 

orm ( Dhifallah and Rekik, 2019 ) and the DGN (ablated version) 

 Gurbuz and Rekik, 2020 ), we rely on the publicly available imple- 

entations 3 and no adjustments are made since they are directly 

pplicable to our datasets. 

https://github.com/basiralab/netNorm
https://github.com/basiralab/DGN
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Fig. 3. Discriminative feature selection pipeline for classifying brain networks using templates. First, we generate two distinct connectional templates for type A samples and 

type B samples. Then we assign a discriminativeness score for each connection using both residual matrix ‖ T A − T B ‖ Frob and absolute alteration ratio matrix max 
(

T A 
T B 

, 
T B 
T A 

)
. 

Next, we pick the top k connections to train a support vector machine (SVM) model for classifying new testing samples as A or B . 

Fig. 4. Centeredness comparison of CBTs generated by SNF ( Wang et al., 2014 ), netNorm ( Dhifallah and Rekik, 2019 ), DGN (ablated version) ( Gurbuz and Rekik, 2020 ) and 

MGN-Net. Charts illustrate the mean Frobenius distance between the connectional templates created using the training sets and networks of the samples in the testing 

set using a 5-fold cross-validation strategy. We report the average distance for each cross-validation fold as well as the average across folds (“Mean” bars on the right). 

MGN-Net achieved the lowest mean Frobenius distance to the population multi-view networks with a high statistical significance demonstrated by a two-tailed paired t- 

test (all p > 0 . 0 0 01 ) for MGN-Net-SNF and MGN-Net-netNorm pairs. As for the MGN-Net-DGN pair, all p > 0 . 05 except NC LH and ASD RH. LH: left hemisphere. RH: right 

hemisphere. 
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Table 3 

Standard deviations of Frobenius distances between the 

connectional brain templates created using the train- 

ing sets and networks of the samples in the testing set 

across 5 cross-validation folds. 

Dataset Centeredness standard dev. across folds 

SNF netNorm DGN MGN-Net 

AD LH 0.07 0.07 0.05 0.06 

AD RH 0.19 0.18 0.14 0.18 

LMCI LH 0.19 0.19 0.2 0.19 

LMCI RH 0.28 0.27 0.22 0.25 

NC LH 0.13 0.13 0.15 0.13 

NC RH 0.12 0.12 0.15 0.12 

ASD LH 0.18 0.18 0.18 0.15 

ASD RH 0.16 0.16 0.18 0.14 
. Results 

.1. Centeredness test 

For reproducibility and generalizability, we split the datasets 

nto training and testing sets using 5-fold cross-validation. We used 

he training set to generate the CBTs for the population and com- 

ute the centeredness on the left out testing fold. To evaluate 

he centeredness of the integrated networks (CBTs), we measure 

he mean Frobenius distance between each network view of each 

ample in the testing left-out fold and the CBT of the four train- 

ng folds. We note that MGN-Net significantly outperforms other 

ethods across all folds and evaluation datasets ( Fig. 4 , two-tailed 

aired t-test, p > 0 . 05 , see Table 3 for standard deviation across

olds). 
9 
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Fig. 5. This chart displays the average centeredness distance across folds of the learned AD and LMCI templates that are biased towards randomly selected 25 samples along 

with the finalized median-based templates generated by MGN-Net, DGN (ablated version) ( Gurbuz and Rekik, 2020 ), SNF ( Wang et al., 2014 ), and netNorm ( Dhifallah and 

Rekik, 2019 ). AD: Alzheimer’s disease. LMCI: late mild cognitive impairment. 
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.2. Centeredness of subject biased templates 

We run validation experiments only on the refined connectional 

emplates produced by taking the element-wise median of subject- 

iased templates to further refine the learned templates by prun- 

ng biased connections. Here, we take a look at the centeredness of 

andomly selected 25 subject-biased CBTs. We note that even the 

ubject-biased templates (i.e. preliminary outputs) learned by the 

GN-Net significantly outperform templates that are produced by 

NF and netNorm in terms of centeredness ( Fig. 5 , Fig. 6 ). 

Although it was not the motivation behind the topology- 

onstrained loss function, penalizing deviations from the node 

trength distributions of the population provided much more con- 

istent subject biased templates. For example, the standard devia- 

ion of the centeredness score for randomly selected subject-biased 

emplates (AD LH. population) estimated by DGN is 0.077 whereas 

T

10 
or the MGN-Net it reaches only 0.029. This phenomenon can 

e explained by the fact that preserving the population topologi- 

al properties regularizes the subject-biased templates by avoiding 

otifs and connections that are not repeated across the popula- 

ion. 

.3. Topological soundness test 

Network science provides us with tools to quantify the topo- 

ogical properties of networks such as clustering, structural holes, 

nd centrality. It is shown that distinctive topological patterns oc- 

ur in a wide range of complex networks from biological to social 

etworks ( Bullmore and Sporns, 2009; Watts et al., 2006; Guimerá

t al., 2005 ). Therefore, it is essential to preserve these complex 

ut systematic patterns during the biological network data inte- 

ration process to generate more realistic and integral templates. 

hanks to the proposed topology-constrained loss function (TCNL), 
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Fig. 6. This chart displays the average centeredness distance across folds of the learned NC and ASD templates that are biased towards randomly selected 25 samples along 

with the finalized templates generated by MGN-Net, DGN (ablated version) ( Gurbuz and Rekik, 2020 ), SNF ( Wang et al., 2014 ), and netNorm ( Dhifallah and Rekik, 2019 ). NC: 

normal controls. ASD: autistic spectrum disorder. 
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e can preserve any topological pattern in a population of multi- 

iew networks when transforming them to a unique holistic con- 

ectional template –in a fully generic manner ( Fig. 7 ). 

In the context of network neuroscience, we evaluated the topo- 

ogical soundness of the learned CBTs by comparing the discrep- 

ncy of the distribution of various topological measures including 

ageRank Page et al. , effective node size ( Burt, 1992 ), and cluster- 

ng coefficient ( Onnela et al., 2005 ) between the population multi- 

iew brain networks and the estimated CBT. First, we calculated 

he ground truth by averaging the distribution of topological mea- 

ures (e.g., clustering coefficient) of each network view of each 

esting subject. Next, we computed the distribution of topological 

easures for the CBT estimated using the training dataset. Specif- 

cally, each distribution is a discrete probability distribution that 

s composed of topological measures calculated for each node nor- 

alized by the total sum of measures across all nodes. Lastly, we 
11 
omputed the Kullback-Leibler divergence of the ground truth dis- 

ributions and distributions derived from the connectional brain 

emplates. These steps were completed with a comprehensive bat- 

ery of graph topology analysis, to assess the consistency and gen- 

ralizability of the new TCNL function where we demonstrated 

hat a simple node strength constraint is sufficient for endowing 

GN-Net with the ability to capture much more complex topolog- 

cal measures such as PageRank and effective node size. We dis- 

lay the PageRank, effective size and clustering coefficient results 

n the form of distribution graphs for AD LH population ( Fig. 8 )

nd also in a tabular form for all populations ( Table 4 ). Remark- 

bly, the connectional brain template generated by our MGN-Net 

rchitecture captures the topology of the connectomic datasets by 

howing striking similarity with the ground truth while netNorm 

nd SNF fail to preserve the multi-view connectomic data topology. 

ur statistical analysis using two-tailed paired t-test also demon- 
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Fig. 7. The figure demonstrates templates estimated by MGN-Net, DGN (ablated version) ( Gurbuz and Rekik, 2020 ), netNorm ( Dhifallah and Rekik, 2019 ), and SNF 

( Wang et al., 2014 ) for the left hemisphere of the AD group along with view averages. It is apparent that the templates generated by MGN-Net and DGN encapsulates 

topological patterns which commonly exist in all views. As for netNorm and SNF case, they capture only a few local motifs across views. 

Table 4 

Evalulation of deviation from ground truth topology. We report the Kullback-Liebler divergence of the ground truth and learned connectional templates for the 

PageRank, effective size, and clustering coefficient distributions. ∗ p < 0 . 005 for MGN-Net vs SNF, MGN-Net vs netNorm and MGN-Net vs DGN (ablated version) for 

all metrics using two-tailed paired t-test. 

Dataset PageRank Dis. ∗ Effective Size Dis. ∗ Clustering Coef. ∗

SNF netNorm DGN MGN-Net SNF netNorm DGN MGN-Net SNF netNorm DGN MGN-Net 

AD LH 0.0552 0.0552 0.0123 0.0046 0.0042 0.0041 0.0010 0.0009 0.0333 0.0333 0.0099 0.0049 

LMCI LH 0.0560 0.0560 0.0147 0.0071 0.0041 0.0040 0.0011 0.0010 0.0338 0.0338 0.0109 0.0060 

AD RH 0.0578 0.0578 0.0121 0.0007 0.0038 0.0037 0.0008 0.0005 0.0348 0.0348 0.0099 0.0029 

LMCI RH 0.0588 0.0588 0.0117 0.0007 0.0038 0.0037 0.0008 0.0005 0.0354 0.0354 0.0097 0.0029 

NC LH 0.0599 0.0600 0.0104 0.0039 0.0104 0.0104 0.0015 0.0012 0.0341 0.0341 0.0114 0.0055 

ASD LH 0.0573 0.0573 0.0100 0.0040 0.0100 0.0100 0.0012 0.0012 0.0326 0.0327 0.107 0.0056 

NC RH 0.0629 0.0630 0.0098 0.0011 0.0102 0.0102 0.0013 0.0008 0.0361 0.0362 0.0110 0.0039 

ASD RH 0.0625 0.0625 0.0087 0.0013 0.0101 0.0101 0.0010 0.0007 0.0359 0.0359 0.0102 0.0043 
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trates that MGN-Net significantly outperformed other methods on 

oth small-scale and large-scale evaluation datasets and across all 

opological measures (two-tailed paired t-test p < 0 . 005 ). 

.4. Discriminative feature selection test 

Having demonstrated that MGN-Net generates both well- 

entered and topologically sound connectional templates, we 

ext evaluated its capacity to preserve distinctive features (i.e., 

dge/connection weights) through the normalization process. We 

eason that a well-representative connectional template can encap- 

ulate the most unique traits of a population of multi-view net- 

orks, which makes it easily distinguishable from other popula- 

ion templates. Those uniquely distinctive features can be used for 

iological network classification tasks such as differentiating the 

ealthy from the disordered brain network. We designed a simple 

trategy based on the learned templates that automatically iden- 

ify the most discriminative network connections distinguishing 
12 
etween two populations. First, we used integration methods to 

enerate two CBTs for populations A and B, respectively. Then we 

ssigned a discriminativeness score to each brain connectivity be- 

ween a pair of ROIs based on the high peaks in the difference 

weighted sum of the alteration ratio and magnitude) between the 

djacency matrices of connectional templates A and B . The intu- 

tion behind this comparison is driven by our hypothesis that sam- 

les belonging to a population A lie further away from the CBT of 

opulation B in comparison with their induced CBT (i.e., from pop- 

lation A ) and vice versa. Hence, a simple comparison between the 

onnectivity matrices of the CBTs of populations A and B can eas- 

ly reveal the most distinctive connectivities to be used in boosting 

he accuracy of an independent classification method ( Fig. 3 ). 

As a proof of concept for the validity of our hypothesis, we 

urther explored the discriminative power of the learned CBTs by 

ur MGN-Net architecture in comparison with benchmark meth- 

ds. We demonstrated the reproducibility of our classification re- 

ults against different perturbation of the training and testing sets 
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Fig. 8. Comparison of topological distributions of templates generated by SNF ( Wang et al., 2014 ), netNorm ( Dhifallah and Rekik, 2019 ), DGN (ablated version) ( Gurbuz and 

Rekik, 2020 ), and MGN-Net against the ground truth network population distribution for the AD left hemisphere population. AD: Alzheimer’s disease. 
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sing 5-fold cross-validation and across both AD and ASD neuro- 

ogical disorders. We set up 4 different classification tasks namely; 

D-LMCI left hemisphere, AD-LMCI right hemisphere, NC-ASD left 

emisphere, and NC-ASD right hemisphere. Next, we selected the 

op k ( k = { 5 , 10 , . . . , 25 } ) most discriminative connections revealed 

y the learned connectional templates of each method and fed 

hem to a support vector machines (SVM) classifier for training. 

ote that by setting small k values, we are only using less than 

ne percent of the available features. Also, note that brain net- 

ork classification is a very challenging task that requires delib- 

rately designed preprocessing steps and architectures to achieve 

atisfactory accuracy. Here, our very modest pipeline that consists 

f template-based feature selection and SVM is designed to evalu- 

te the templates’ capability of identifying important connections. 

e empirically set the best SVM parameters including the kernels 
13 
or each method independently using grid search. Table 5 displays 

he average accuracy across folds and selected k values. Remark- 

bly, the SVM with training features selected by our MGN-Net out- 

erformed baseline methods on 3 classification tasks –except the 

D-LMCI (RH). These results imply that our proposed model not 

nly generates more centered and topologically sound connectional 

emplates but is significantly better at capturing unique traits of 

ulti-view graph populations. MGN-Net outperformance was also 

eplicable in different multi-view connectomic datasets with subtle 

onnectional changes between comparison groups, suggesting that 

ur model could successfully spot integral and holistic brain con- 

ections that largely vary across both populations –which leads us 

o the next series of experiments on population template finger- 

rinting. 
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Table 5 

SVM binary classification results using features selected by SNF ( Wang et al., 2014 ), net- 

Norm ( Dhifallah and Rekik, 2019 ), DGN (ablated version) ( Gurbuz and Rekik, 2020 ) and 

MGN-Net. Average accuracy across 5 folds and k values are presented for classifying AD- 

LMCI and NC-ASD using the left and right hemispheres features separately. The standard 

deviations σ of average accuracies across k values are indicated in parenthesis. 

Dataset Ave. Accuracy 

SNF netNorm DGN MGN-Net 

AD-LMCI LH 70.92 ( σ 1 . 63 ) 71.37 ( σ 0 . 93 ) 64.63 ( σ 3 . 30 ) 74.23 ( σ 2 . 91 ) 

AD-LMCI RH 56.72 ( σ 0 . 73 ) 55.92 ( σ 0 . 93 ) 53.25 ( σ 0 . 00 ) 54.05 ( σ 1 . 19 ) 

NC-ASD LH 54.58 ( σ 1 . 06 ) 54.97 ( σ 1 . 87 ) 55.94 ( σ 0 . 54 ) 56.26 ( σ 0 . 58 ) 

NC-ASD RH 55.45 ( σ 0 . 77 ) 56 ( σ 1 . 56 ) 57.16 ( σ 1 . 52 ) 58.13 ( σ 1 . 05 ) 

Fig. 9. Circular graphs illustrating the top 5 most discriminative connections that differentiate between two brain states in each pair of groups AD-LMCI and NC-ASD, 

respectively, for both right and left hemispheres. 
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.5. Biomarker discovery for Alzheimer’s disease and autism spectrum 

isorder 

Given a particular brain disorder, we further investigated 

hether the connectional features of the learned disordered CBT, 

ith the largest deviations from the learned healthy CBT, present 

 connectional fingerprint of the disorder of interest. Specifically, 

e tested if a naive comparison between disordered and healthy 

opulation templates provides a meaningful description of how 

he multi-view connectional aspect of a brain is altered by a 

articular disorder. Particularly in this study, we leveraged the 

BTs generated by MGN-Net to recognize and decipher the con- 

ectional morphological alterations of brain regions fingerprint- 

ng Alzheimer’s disease and the autism spectrum disorder by se- 

ecting the top 5 connections with the highest discriminative- 

ess scores for AD-LMCI and NC-ASD populations, respectively 

 Fig. 9 ). 
14 
Discovered Alzheimer’s disease connectional fingerprint . We dis- 

overed that the most pathologically altered connection between 

rain regions that differentiates AD patients from LMCI patients are 

ostly clustered around the entorhinal cortex (EC) and cuneus cor- 

ex (CC) ( Table 6 ). EC is part of the hippocampal memory system 

nd plays an essential role in memory functions such as memory 

ormation, memory optimization in sleep, and memory consolida- 

ion. Therefore, atrophy in EC is likely to be the cause of a signif- 

cant decline in memory for AD patients when compared to mild 

ymptoms of LMCI ( Yassa, 2014; Van Hoesen et al., 1991 ). More- 

ver, the deviation of CC which is involved in response inhibition 

 Crockford et al., 2005 ) and generating finger movements based 

n gaze position ( Bédard and Sanes, 2008 ) might explain the AD 

trong effect on tasks requiring controlled inhibition processes and 

otor skills. Insights derived from a simple template comparison 

lso align with existing morphological clinical findings about the 

emented brain. For example, several studies show that morpho- 
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Table 6 

Top 5 discriminative connections discovered for each population pairs. 

Rank AD-LMCI LH AD-LMCI RH 

1 Entorhinal Cortex ←→ Superior Temporal Sulcus Cuneus Cortex ←→ Fusiform Gyrus 

2 Entorhinal Cortex ←→ Unmeasured Corpus Callosum Cuneus Cortex ←→ Supramarginal Gyrus 

3 Entorhinal Cortex ←→ Parahippocampal Gyrus Entorhinal Cortex ←→ Insula Cortex 

4 Entorhinal Cortex ←→ Frontal Pole Inferior Temporal Gyrus ←→ Transverse Temporal Cortex 

5 Entorhinal Cortex ←→ Temporal Pole Lateral Occipital Cortex ←→ Lateral Orbital Frontal Cortex 

Rank NC-ASD LH NC-ASD RH 

1 Pericalcarine Cortex ←→ Cuneus Cortex Pericalcarine Cortex ←→ Unmeasured Corpus Callosum 

2 Pericalcarine Cortex ←→ Entorhinal Cortex Superior Temporal Gyrus ←→ Inferior Parietal Cortex 

3 Insula Cortex ←→ Entorhinal Cortex Superior Temporal Gyrus ←→ Lateral Orbital Frontal Cortex 

4 Pericalcarine Cortex ←→ Lingual Gyrus Transverse Temporal Cortex ←→ Pars Orbitalis 

5 Pericalcarine Cortex ←→ Insula Cortex Pericalcarine Cortex ←→ Transverse Temporal cortex 
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ogical atrophy in the entorhinal cortex is the primary biomarker 

or the conversion of MCI to AD ( Lóez et al., 2014; Devanand et al.,

007; Whitwell et al., 2007 ). Besides, changes in the volume and 

he cortical thickness of the CC is also extensively reported as an 

ccurate indicator for the conversion of MCI to AD ( Wee et al., 

013; Niskanen et al., 2011 ). 

Discovered autism spectrum disorder connectional fingerprint. For 

he large-scale NC-ASD population, MGN-Net identifies the su- 

erior temporal gyrus (STG), transverse temporal gyrus (TTG, or 

eschl’s gyrus), the insular cortex (IC), and the pericalcarine cor- 

ex (PC) as top connectional morphological biomarkers of ASD 

 Table 6 ). STG plays an important role ( Chang et al., 2010 ) in audi-

ory, phonetic processing, and social cognition thus, it can explain 

he receptive language ability deficits which is one of the core fea- 

ures of autism ( Bigler et al., 2007 ). Alteration of TTG which is

he first cortical structure that processes the auditory information 

an be the cause of impaired or delayed language abilities of chil- 

ren with autism ( Landa and Garrett-Mayer, 2006; Luyster et al., 

008 ). Furthermore, it is extensively reported that the atrophy in 

he IC which governs the processing of empathy ( Singer, 2006 ), 

orm violations ( Sanfey et al., 2003 ), and emotional ( Phan et al.,

002 ) in the ASD population might be the cause of abnormali- 

ies in emotional and affective functions ( Yamada et al., 2016a ). 

he alteration of PC which is part of the human visual cortex is 

ikely to be linked to visual symptoms of ASD such as gaze aver- 

ion ( Mirenda et al., 1983 ), intense light sensitivity ( Jones et al.,

003 ), and disorganized processing of face stimuli ( Pelphrey et al., 

002 ). Again, from a brain morphology perspective, our connec- 

ional ASD blueprint resonates with the existing findings on mor- 

hological abnormalities of the autistic brain. For instance, multi- 

le studies showed that a decrease of both white and gray mat- 

er volume particularly in the STG ( Bonilha et al., 2008 ) elevated 

hite matter volumes in the TTG ( Xiao et al., 2014 ), significant 

olumetric increase in IC ( Yamada et al., 2016b ), and thicker PC 

 Zielinski et al., 2014 ) as common morphological traits that disen- 

angle subjects with autism from healthy subjects. 

. Discussion and conclusion 

In this work, we proposed the MGN-Net to generate a normal- 

zed connectional template that fingerprints a population of multi- 

iew networks in an end-to-end manner. MGN-Net is topology- 

ware thanks to its graph neural network layers and novel loss 

unction that preserves domain-specific topological patterns during 

he integration process. Moreover, MGN-Net is extremely flexible 

s it is composed of customizable modules that can be useful to 

he wide community focused on multi-view network integration 

r normalization stretching from systems biology to social net- 

orks. In general, these features of MGN-Net contrast with other 

etwork integration methods since they require a set of strong as- 
15 
umptions such as assuming linear relationships among samples, 

nd neglecting distinctive topological characteristics of complex 

etworks. 

From a network neuroscience perspective, we demonstrated 

hat our MGN-Net consistently and significantly outperforms tra- 

itional integration methods by generating well-centered, discrim- 

native, and topologically sound connectional templates. Together, 

ur work shows that normalization and integration of multi-view 

iological graphs can lead to valuable insights by discovering con- 

ectional biomarkers that disentangle the typical from the atyp- 

cal connectivity variability. For example, our connectional brain 

emplates that fingerprint the population of multi-view brain net- 

orks derived from T1-weighted MRI scans have revealed a set of 

iomarkers for both Alzheimer’s diseases and the autism spectrum 

isorder. 

Furthermore, conventional methods cannot easily be adapted 

o more sophisticated network structures such as networks with 

ynamic connectivity while our flexible architecture needs only 

mall tweaks to operate on any type of network. In fact, our MGN- 

et is powerfully generic and easily adaptable in design to differ- 

nt graph-based problems. For instance, geometric recurrent neural 

etworks (RNNs) based on graph convolutional operation can be 

sed to fuse dynamic brain networks derived from MRI measure- 

ents acquired at different time points to reveal the trajectory of 

eurological diseases ( Ezzine and Rekik, 2019; Ghribi et al., 2021; 

ürler et al., 2020; Nebli et al., 2020 ). Similar to other methods, 

GN-Net assumes that all network views contain the same num- 

er of nodes. As MGN-Net is rooted in the powerful and adaptable 

eep learning mindset, it can be naturally extended to handling 

on-isomorphic graphs with varying numbers of nodes and local 

opologies by designing graph up-sampling or down-sampling lay- 

rs. However, the design and physical interpretation of such up- 

ampling or down-sampling extensions require domain knowledge 

nd may vary across applications. Therefore, in our future work, we 

ntend to devise a build-in extension to MGN-Net that is agnostic 

o the number of nodes to overcome this limitation. Furthermore, 

enerated connectional templates strongly rely on the selection of 

he node embedding relationship function. For our case we used 

he absolute difference, however, this can be also learned to better 

odel the complex and heterogeneous interactions between graph 

odes. 

We generated representative connectional templates based on a 

ingle population for comparative studies. However, MGN-Net can 

e further enhanced by adding an auxiliary classification component 

ight after the graph convolutional layers to create targeted con- 

ectional templates for tasks that primarily aim to disentangle two 

pecific groups. For example, gender differences in cortical mor- 

hological networks can be studied using tailored targeted connec- 

ional templates method. However, we anticipate that the classifi- 

ation component can force the model to enhance differences be- 

ween group connectional templates to boost classification results, 
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hus the learned templates can be useful to study specific popula- 

ion pairs. 

Like other deep learning models, interpretation of GNNs re- 

ains a formidable challenge due to their black-box design. A 

ew line of research studies this notorious problem. For instance, 

 Huang et al., 2020 ) proposed the GraphLIME that is a generic 

NN-model explanation framework that interprets a node by gen- 

rating a model from its N-hop neighbors and computes the k 

ost representative features as the explanation using a kernel- 

ased feature selection algorithm. Another work ( Ying et al., 2019 ) 

roposed a model-agnostic approach called GNNExplainer for ex- 

laining any graph-based machine learning task. GNNExplainer 

dentifies a compact subgraph (with a constraint size) G s that min- 

mizes the uncertainty of a trained model on a given task when its 

NN computation is limited to G s . In our future work, we will ex- 

lore the potential of these methods to improve the interpretabil- 

ty of our MGN-Net architecture. Their explanations may allow us 

o identify and fix some of the systematic errors made by MGN- 

et. More importantly, their feature attribution capabilities can be 

everaged to guide our integration process to further ensure that 

he important connectional traits are preserved during the multi- 

raph integration task. For example, we can first train an auxiliary 

NN classifier to differentiate several brain network populations, 

hen GNNExplainer can be used to generate a subgraph pattern 

hared between instances that belong to the same populations. Fi- 

ally, this graph pattern can be used to assign different importance 

eights to nodes in the MGN-Net’s loss function. 

In contrast to other baseline network integration tools, one of 

he major advantages of our method is that it can be trained 

ollaboratively by different parties without sharing private data 

ased on innovative deep learning strategies such as feder- 

ted learning ( Koneçný et al., 2015 ) and split neural networks 

 Vepakomma et al., 2018 ). Furthermore, typically, biomedical data 

nalysis tasks are aggravated by the limited availability of the 

raining data. However, MGN-Net can be trained using transfer 

earning to achieve good accuracy with limited data. We anticipate 

hat MGN-Net will accelerate the modeling of biological networks 

nd help to ultimately understand the complex dynamics of bio- 

ogical phenomena. 

recomputation and MGN-Net infrastructure 

Our publicly available implementation takes a set of stacked ad- 

acency matrices (tensors) as input, however, for efficient graph 

onvolutional layer computation, a couple of preprocessing steps 

re executed such as casting tensors into different data structures 

uch as edge, feature, and node embedding lists. These precom- 

utation steps run on CPUs and the time and space complexity 

f these steps depend on the number of subjects, graph nodes as 

ell as the number of views. The main MGN-Net computations in- 

luding graph convolution operations, pair-wise node embedding 

elationship computation, and backpropagation are performed on 

PUs. MGN-Net training and testing were conducted on a machine 

ith Tesla V100 32GB GPU and Intel Xeon e5-2698 v4 2.2 GHz (20- 

ore) CPU. As for every deep learning architecture, backpropagation 

s the most computationally demanding step for MGN-Net as well. 

articularly, our random subset size hyperparameter is the most 

mportant factor affecting this computational cost followed by the 

umber of samples, nodes, and views. 

ata availability 

The data that support the findings of this study are pub- 

icly available from ADNI data ( http://adni.loni.usc.edu/ ). For repro- 

ucibility and comparability, the authors will make available upon 
16 
equest all morphological networks generated based on the four 

ortical attributes (maximum principal curvature, cortical thick- 

ess, sulcal depth, and average curvature) for the 77 subjects (41 

D and 36 LMCI) following the approval by ADNI Consortium. Our 

arge-scale dataset is also available from the public ABIDE initia- 

ive ( http://fcon _ 10 0 0.projects.nitrc.org/indi/abide/ ). Following the 

pproval by the ABIDE initiative, all morphological networks gener- 

ted from the six cortical attributes (cortical surface area and min- 

mum principle area in addition to 4 aforementioned measures) for 

he 310 subjects (155 NC and 155 ASD) are also accessible from the 

uthors upon request. 

ode availability 

An open-source Python implementation of MGN-Net is available 

n GitHub at https://github.com/basiralab/MGN-Net . The release 

ncludes a tutorial, notes regarding Python packages, which need to 

e installed and, connectional brain templates (CBTs) learned from 

ur four datasets by MGN-Net. Users can directly run MGN-Net ei- 

her on simulated or externally supplied datasets. Information re- 

arding dataset format can be also found in the same repository. 

yperparameters for the model and training routine can be easily 

uned by editing a configuration file. 
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